If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=78.4t+4.9(t)^2
We move all terms to the left:
0-(78.4t+4.9(t)^2)=0
We add all the numbers together, and all the variables
-(78.4t+4.9t^2)=0
We get rid of parentheses
-4.9t^2-78.4t=0
a = -4.9; b = -78.4; c = 0;
Δ = b2-4ac
Δ = -78.42-4·(-4.9)·0
Δ = 6146.56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78.4)-\sqrt{6146.56}}{2*-4.9}=\frac{78.4-\sqrt{6146.56}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78.4)+\sqrt{6146.56}}{2*-4.9}=\frac{78.4+\sqrt{6146.56}}{-9.8} $
| 9+1/12=k/9 | | 2.5p=47.5 | | -12+52=-4(x+5) | | 87=-3m | | 180=4x-39 | | 4x-35=2x+5 | | -8w-6=2(w+7) | | √15x-24=x+2 | | 12=5x−13x−44 | | (y*60)/3.2=292 | | 0.8/10=x/100 | | (y*6)/3.2=292 | | x+2/3=14/17 | | x+3÷2=8 | | 6(x+6=84 | | 2x+20=169 | | x+6+12x-13=19 | | 2/x=3.6 | | -52=3-8n | | 4.2y=16.4 | | 3x+19=169 | | 8(-2-5p)=-6p-16 | | 5x-91=107 | | 4x+x+8=18 | | 3(y+8)=7y-4 | | 3(4x+6)=45+39 | | -4v+32=-2(v-8) | | 3(4y+6)=−2(3−6y) | | 4f-9=2f+15 | | 89+5x+4=180 | | 3t-4=-3(-t-1)+7 | | 1/3y+2=1/5y |